Bring Lidar in a new light: use of holograms to extend your research
Agenda

• Introduction to Zebra Imaging Technology
• Lidar Value
• Two workflow export for hologram creation
• Demonstration of hologram technology
Holographic Displays

Film-based 3D images made from digital/digitized data, displayed with a simple light
Zebra Technology - 3D Holographic Prints
communicates whole designs in true-3D

- **Interactive, true-3D**
 - Reach into the model, walk around
 - See the whole design, not just portions
 - Full parallax
 - Viewable from 360°

- **No special equipment**
 - No glasses or goggles
 - No computers or projectors
 - No special software

- **No special user training**
 - Easy-to-use
 - Closes communications gaps immediately
Holographic Imager Systems

M1 Monochrome
- 3 hour production cycle
- 32” x 24” film sheets
- Semi-automated processes
- High resolution (1mm hogels)
- Monochrome (green) imagery
- Horizontal and vertical formats
- Available today

M2/C1 Color/Monochrome
- <2.5 hour production cycle (faster)
- 36” x 24” film sheets (larger)
- Automated processes, sheet or roll
- Higher resolution (0.7mm hogels)
- Color or monochrome imagery
- Reduced footprint, increased robustness
- Software application plug-in integration
Key Values of Holographic Displays

Effortless comprehension and common-view collaboration for multiple simultaneous viewers

- Correct 3D from every vantage point (“full parallax”)
- Wide viewing angle
- Portable, sturdy, and easy to use
- Monochrome or Full Color
- Scalable

Dissemination of accurate 3D visuals in intuitively understood formats

- No distortion
- Large depth volume
- Multi-view channel, 3D overlay capability
- Multi-source fusion
- Collection source and software-application independent
Validated Applications

Military/Law Enforcement
- Planning / After-action
- Situational Awareness
- Training
- Common Operating Picture
- Orientation, interviewing

AEC Visualization
- Geospatial context & Urban Planning
- Pre-schematic concept communication
- Schematic and Detail Design
- BIM Documentation
- Public Communication, Marketing
Rendering Features

GIS

Digital Elevation Maps (legacy)
- Geo-referenced
- Triangulated meshes
- Various DTED levels

Point-clouds
- Geo-referenced
- Shaded
- Geo-rectified color/textures
- Variable point sizes, shapes

Point-clouds (object-based)
- Detail and edge-enhanced
- Integrated shading
- Texture mapping
Detail Enhancement

Terrain and Textures

Edge-enhanced shading, expanded points

Scan data provided by Army Geospatial Center

Scan data provided by Smart MultiMedia

Copyright 2012 Zebra Imaging. All Rights Reserved.
Dynamic 3D Display Features

Dynamic 3D display for interactive graphic-intensive applications

– Easy to see 3D
 • No glasses or eye fatigue
 • No view-position distortion, flipping, or “sweet spot”
 • Correct 3D from every vantage point
 • Wide 360° visibility for team/collaborative viewing

– Electronically updated in near real-time
 • Compatible with visualization software applications
 • “3D Multi-touch” interaction-capable

– Modular & scalable design
 • Man-portable to > 6x6 feet
 • Horizontal, vertical, inclined orientations

DARPA-Sponsored Development Program initiated 2004
Zebra Imaging Dynamic 3D Displays

Prototype (simulated image)

Team viewing – wide viewing range enhances collaboration

Natural 3D (no eyewear) continuous viewing

Bright true-3D images

Text-legible quality

Self-contained table-like format display

Interactive

3D image volume, extends above & below table surface

1-meter diagonal, 12 Tiled Modules

Photo of actual 3D Image

Copyright 2012 Zebra Imaging. All Rights Reserved.
Functional Schematic – Zebra 3D Display

Links to software applications based on specific APIs, including:

- OpenGL – visualization, GIS
- OSG – simulation, virtual words, MMO games
- DirectX – Windows-based graphics
Case for Lidar in holographic display
LIDAR + Holographic Display Utility Case

• Come to consensus
• Provide instructional pre-visualization
• Express circumstances and context clearly
Holographic Displays for Rapid Consensus

Come to consensus over complex, multi-disciplinary problems (understand the design challenge)

- A problem/change/challenge is encountered
- Engineering, MEP need to avoid defensiveness & put their heads together to discuss, brainstorm solutions
- Finance needs to buy-in on level-of-effort, cost validation, priority
- Client needs to understand the trades, other stakeholders weigh in
- LIDAR acquires “ground truth”
- Comprehensive Holographic Display is produced
- An in-field meeting is called to review
Holographic BIM-driven Consensus

LAX-Bradley Terminal Modernization: Baggage Handling Area

- Conveyor system upgrade
- Scan called-in late in the project
- Project heavy with delays from clashes and interference of systems
- Strained relationship between Owner, Architect, GC and Sub-Contractors
- 3D scan and model used to identify and resolve problems with design team.
- **Hologram used to relay problems to tradesmen in the field** (channeled image as-is to design clashes)

Scan data: Clark-McCarthy / Scott Cedarleaf Joint Venture
Holographic Displays instruct and plan

Provide instructional pre-visualization in an intuitively understood form

- People in complex environments and critical structures need protection and safety
- LIDAR acquires key structures and details
- Way-finding/route-map, or baseline Holographic Displays are produced
- First responders, safety personnel, occupants can study periodically
- Immediate, straightforward consultation in an emergency
- Planners consult for modification, events contingencies
Holograms for stark visual clarity

Brunswick, Georgia Hospital storm surge flood models

• County-wide aerial LIDAR acquisition
• Lidar with aerial overlay
• CAT 3, CAT 5 Hurricane storm surge modeling / superposition
• Holographic display and overlay presentation to board, safety personnel
• Modification of safety and evacuation plans
Holographic Displays make the case

Express spatially-critical circumstances and context clearly and accurately

• Incident evidence must be archived, analyzed and courtroom-communicated
• LIDAR acquires post-event conditions, locations, dimensions
• Archive, analysis, and evidentiary Holographic Displays are produced
• Forensic specialists make visual consultations for lines-of-sight, burn patterns
• Insurance adjusters retain archives for liability
• A jury clearly understands physical elements critical to the case
Holograms communicate truth...fast

Forensic documentation (Structure issues or failure)

• LIDAR acquisition of scene
• Analysis can be applied: line of site, trajectory
• Placement, reconstruction, illustration of critical details
• Possible holographic display to jury or reviewers
• Hopeful for clarity of understanding and judgment
Data is supplied via secure FTP in a standard format (XYZ, PTC, LAS, VRML, ASCII, etc.)
• Verification renderings/movies are provided via email
• Holographic Display is recorded, laminated, integrated with light (optional) and shipped

Turnaround times in less than 1 week, with rush service available
Workflow for holographic print

Two Export Products

• ZScape Exporter for Esri ArcGIS 10.0 ArcScene ™
 – Update of exporter for new Lidar features at 10.1
• ZScape Preview for 3D models
 – Existing technology to access point clouds and lidar
Esri ArcGIS ArcScene – Build 3D project
ZScape Exporter for ArcScene™ 10.0 Plug-In

Multiple sizes/scales, monochrome or color
ZScape Exporter for ArcScene™ 10.0 Plug-In
Previewer rotates hologram data to simulate 3D
ZScape™ Preview

- Standalone package where 3D models (SketchUp, Microstation, Maya, Revit, 3DS Max) can be imported
- Formats (OBJ, XYZ, PTS, LAS, STL)
- Add texture maps, transparency and other effects from third-party graphics programs
- Combine point clouds with polygonal models for greater accuracy
Hologram Display Demonstration